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A body is started impulsively from rest and moves on an arbitrary path in an 
incompressible, stably stratified, rotating fluid. The phase configuration of the 
waves which are generated is studied using small amplitude wave theory. The 
theory is compared with experiment for a few special cases which include a hori- 
zontal cylinder (a) oscillating about a position fixed in the fluid, (b)  moving 
with constant velocity and (c)  moving with a constant angular velocity in a 
circular path relative to the fluid. Theory and experiment show reasonable 
agreement except where wakes interfere with the wave pattern. 

1. Introduction 
The phase configuration of the inviscid incompressible internal waves which 

develop around a body moving in a stably stratified fluid which has a constant 
buoyaizcy frequency has been discussed by Gortler (1943), Lighthill (1967), 
Mowbray & Rarity (1967), Rarity (1967), Stevenson (1969, 1973) and Stevenson 
& Thomas (1969). The phase configuration of inertial waves generated by a body 
moving in a steadily rotating fluid have been described by Gortler (1944, 1957), 
Oser (1958), Nigam & Nigam (19629, Lighthill (1967) and Prabhakara Rao (1973). 
In many geophysical phenomena, fluid is both rotating and stratified. Subba Rao 
& Prabhakara Rao (1971) have considered such a fluid and have calculated the 
axisymmetric waves around a body moving along the axis of rotation, and 
Redekopp (1975) has considered both two- and three-dimensional bodies moving 
with a constant mean velocity in a horizontal plane. 

The theoretical work is now extended to the waves around a point body and a 
two-dimensional body which move on an arbitrary path in a rotating stratified 
fluid. Small amplitude wave theory is used to obtain an equation for the far- 
field phase configuration of the waves in terms of a body velocity which can vary 
with time. The equation is used to find the wave system around a horizontal 
cylinder which (a) oscillates, ( b )  moves with constant velocity at  various angles 
to the horizontal, ( c )  oscillates and moves with a constant mean velocity in a 
horizontal plane, (d) moves with constant angular velocity on a circular path in 
a vertical plane and (e) oscillates and moves on a. circular path. For cases (a) ,  
(b)  and (d) the theory is compared with experiments in which the wave systems 
are observed with a schlieren system. The theory for the Cauchy-Poisson waves 
due to an impulsive start is included but, unlike the situation in purely stratified 
flow (Stevenson 1973), their presence in the experiments is scarcely visible. 
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2. Analysis 
For an inviscid, incompressible, non-diffusive Row of a rotating stratified 

fluid, the equations of motion written with respect to a co-ordinate system rotat- 
ing with the fluid are (Greenspan 1968, p. 5 )  

V . q  = 0, Dp/Dt = 0 (11, (2) 

(3) 

where p ,  q, P and g are the density, velocity, pressure and gravitational accelera- 
tion, respectively. The unit vector k is in the vertical direction, G? = Slk and 
the radius vector r = xi + yj. If it  is assumed that there is static equilibrium, i.e. 
that the background fluid has no relative motion in the rotating frame of refer- 
ence, then q, = 0. A subscript e will be used to denote an equilibrium value and 
a prime will be used for a disturbance from equilibrium. For equilibrium the 
momentum equation (3) yields 

and p[aq/at+gv(q.q)+(v A q)  A q 4 2 Q  A q] = -VP--pG? A (G? A r)-pgk,  

VPe+peQ A (S2 A r) +p,gk = 0. (4) 

The continuity equation and the linearized momentum equation from (1) and 
(3) are 

and 

By taking the curl of the momentum equation (4) it  can be shown that 

V.q‘  = 0 ( 5 )  

( 6 )  p,[aqi/at + 2 ~ ?  A 9’1 = - VP’ -PIG? A (G? A r) - p‘gk. 

P e  = Pe[z-  (Q2r2/2g)l, (7) 

where r2 = z2+y2. It will be assumed that x $ Q2r2/2g so that pe = pe(z), i.e the 
isopycnic surfaces are horizontal. For this case the linearized incompressibility 
equation ( 2 )  becomes - . .  g+q’. r z k )  = 0.  

Two-dimensional waves 
The waves will be approximately two-dimensional and parallel to the y axis if 
the derivatives with respect to y are zero and if the y term in the linearized 
momentum equation is negligibly small compared with the other terms. This 
will be the case if Q2y < g. The implications of the approximations will be dis- 
cussed when the theory is compared with experiment. 

Let q ‘ ( x , z )  = (u’,v‘, w’),u’ = a$/& and w‘ = -a$-/ax so that the continuity 
equation (5) is satisfied. Upon eliminating p f ,  p f  and v’ between (6 )  and (8) one 
obtains 

where N is the buoyancy frequency, - ( g p e l  dp,/dz)*. 
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If we look for a wave solution of the form 

9 = $o(.z) exp { i (k ,x  + k 3 ~  - wt)), 

then (9) can be written as 

N2 
= $oNak2, + 4Q2 (Po (kf + i 7 k3) +$o - 2ik3) - $0], (1 1) 

where the dot denotes differentiation with respect to z. From the imaginary part 
of (1 1), @o is proportional to exp (N22/2g), which ensures that energy is conserved. 
Equation (1 1) then reduces to the two-dimensional dispersion relation: 

u2{k2, + k; + (N2/2g)2)  = N2k; + 4Q2(kg + (N2/29)2}. (12) 

Three-dimensional waves 
If the Boussinesq approximation is applied to (8) and if a wave solution of the 
form 

(13) 

is sought, then the three-dimensional dispersion relation takes the form (Rede- 
kopp 1976) 

(14) 

By comparing the two-dimensional form of these results with those in the last 
subsection, it is seen that the Boussinesq approximation implies that 

(N2/2g) ,  << ki and N2z/2g 4 1. 

$..c exp { i (k , z  + k, y + k, z - wt) )  

o2(k: + k,2 + k:) = N2(k: + k,2) + 4Q2k:. 

The wavenumber direction is defkied by the angles [ and 7 such that 

k = (k,, k,, k3) = 1 (k2, + k,2)*l {cos E,  sin 5, -tan 7). 

The dispersion relation (14) can now be written as 

w2 = N 2  cos2 7 + 4Q2 sin2 7. (15) 

At sufficiently large distances from the forcing region, the group velocity c 
and the phase velocity vp are given by (see, for instance, Lighthill 1965) c = Vku 
and vp = wk/lkla. Thus, from the dispersion relation, 

and 
w 

vp = cos2 ~ ( C O S  g, sin 5, -tan 7). I (k2, + k3*I 

The theory now follows that of Stevenson (1973). A body starts to move at 
time to with velocity Q(t) such that R(t) is its position with respect to the origin 0, 
which is fixed in the undisturbed background fluid, as in figure 1. The body is a t  
point A at time t ,  and energy radiated from A in a particular direction 7 reaches 
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P 

FIGURE 1. The path of the body. 

P, at the position r(t) relative to the origin, at  time t .  Thus 

r ( t )  = R, + (t - t,) c, (18) 

where the subscript one refers to conditions at  time t = t,. The phase CD at P is 
given by 

@ ( t )  = (k.  c - 0) ( t  - t,) - Oft, + #o, 

where wf is a forcing frequency associated with the body and #o is a constant. 
The relation between o and uf is given by the Doppler equation 

w = wf+Ql.k. 
As k. c = 0, (19) implies that 

t - t ,  = - # / ( w - w f ) ,  

where #( t )  = @(t)-#,+uft .  The radiation condition is applied by always en- 
suring that t - t ,  > 0. 

If the body moves in the x, x plane such that Q = Q(cos 8, 0, sin 8),  where 8 is 
the angle which the path of the body makes with the horizontal, then the 
Doppler equation (20) becomes 

w - wf = &,I (k: + k$l {cos 8, cos - sin 8, tan q}. (22) 
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The phase configuration is obtained by substituting (16), (21 )  and ( 2 2 )  into (is), 
so that 

sin 7 cos2 7 [cos 8, cos f: - sin 8, tan 71 r = R , -  Qi $ ( N 2  - 40’) 
w(w - Wf)2  

x {sin 7 cos f:, sin 7 sin f:, cos q}. ( 2 3 )  

# ( t )  varies by 227 between one wave crest and the next. If the body were a hori- 
zontal cylinder then the phase configuration r(x, x )  would be obtained by letting 
f: = 0 in (23 ) .  

When a body moves impulsively, further waves, nameIy the Cauchy-Poisson 
waves, are produced. The wavenumbers satisfy the dispersion relation but are not 
restricted by the Doppler relation. Because k .  c = 0, the phase after a disturbance 
at time t = to is given by 

a) = -w(t-t,). (24 )  

The direction of energy propagation and the lines of constant phase are, from 
the dispersion relation, inclined to the vertical at  an angle 7 given by 

& [N2  cos2 7 +- 4Q2 sina 719 = $/(t - to ) .  ( 2 5 )  

The wave crests and troughs are vertical circular cones for a point disturbance 
and St Andrew’s crosses for a horizontal line disturbance. When N > 2Q the 
waves appear a t  the vertical and, as time increases, move towards the horizontal, 
where they disappear. When Q = 0 the waves only reach the horizontal when 
t = 00. If 2Q > N the waves first appear a t  the horizontal and move towards the 
vertical, where they disappear. When N = 0 the waves only reach the vertical 
when t = 00.’For all the above cases the number of wave crests increases with 
time. 

3. Comparison of theory with experiment 
Apparatus 

A glass-sided tank 0-64 m long, 0.23 m high and 50 mm from front to back was 
filled with stratified brine which had an almost constant buoyancy frequency. 
The tank was mounted on a rotating table. A schlieren system with 0.3m dia- 
meter mirrors was used to observe the waves which developed when a horizontal 
circular cylinder of diameter 9 mm was moved through the fluid. 

In  the theory the following assumptions were made: Q2r2/2gz < 1, Q2ylg < 1, 
N2x/2g < 1 and N2/2g < k3. In  the experiments 

~2r2/2gz  < 3 x 10-2, Q2Ylg < 7 x 10-3, ~ 2 2 / 2 g  < 3 x 10-2 

and 

The value of the last of these terms implies that the vertical wavelengths should 
be very much less than 5 m, which is much larger than the height of the tank. 

In  a rotating stratified fluid the isopycnic surfaces are not horizontal except 
on the axis of rotation. The curvature of these surfaces introduces a non-uniform 
deflexion of the light rays constituting the schlieren beam. This deflexion was 
found to be negligible compared with that caused by the disturbance. 

N2/2g 21 2 x 10-4mm-l. 
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FIGURE 2. An oscillating disturbance. - - - - , equation (15) with N = 1.99 rad/s, 
2R = 1*26rad/s; 0, experimental points for frequency of; L_ , equation (15) with 
N = 1.95 rad/s, 2R = 3.14 rad/s; 0 ,  a experimental points corresponding t o  w, and 
20 ,  (second harmonic) respectively. 

The experiments were outside the range in which one would expect to find 
Taylor columns using the criterion giving by Hide & Ibbetson (1966) for purely 
rotating flow. 

An oscillating cylinder 

For given uf, N and 51, all the wavenumber vectors are inclined at an angle 7 to the 
horizontal. From (16) it follows that the energy propagates a t  an angle 7 to the 
vertical. The lines of constant phase form a St Andrew’s cross with arms inclined 
at 7 to the vertical. Subba Rao & Prabhakara Rao (1971) considered theoretically 
the case of an oscillating axisymmetric disturbance and the resultant conical 
waves have similar angular relationships to those of the crosses considered here. 

Primary waves are created when the cylinder’s oscillatory frequency uf lies 
between N and 2 0  but higher harmonics will also produce waves if their fre- 
quencies lie between N and 2Q. There are three distinct cases to consider. 

(a )  N > 251. When w is close to N the arms of the cross-wave are close to the 
vertical; 7 is close to 0 or r. As w decreases towards 2Q, 7 tends towards or 
$r. The phase velocities are directed towards the level of the disturbance. 

(b )  2!2 > N .  When wf is close to N ,  7 is close to 0 or 7 ~ .  As uf increases towards 
2S2, 7 tends towards or $7~. The phase velocities are directed away from the 
level of the disturbance. 

(c) When 2Q = N or when uf = N or uf = 2Q, the inviscid theory predicts 
that no waves of finite wavelength exist because the group velocity is zero. 

Experimental results showing the relationship between the angle of the waves 
and the frequency of oacillation are compared with the theory in figure 2. A 
photograph of one of the crosses is shown in figure 3 (a )  (plate 1). 

Cylinder moving with constant velocity 

A horizontal cylinder moves with constant velocity at an angle 8 to the horizontal, 
so that 0, = &(cos 8, sin 8) and R, = &t,(cos 8, sin 8). Lines of constant phase are 
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4 
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- 10 -8 -6 -4 -2 0 

2 fix/& 
FIGURE 9. Oscillatory wave system with 4 2 R  = 0.6, 8 = 0". --- , N/2!2 = 0 ;  

--- , N / 2 R  = 0.2;------,N/Zfi= 0 * 5 ; - , N / 2 n  = 0.7. 

calculated from (15) and (23) by putting 
the expressions for c and vp: 

= 0. It is useful to note in particular 

and 

with 
w2 = N 2  C O S ~  7 + 4Q2sin2 7. 

(a) The cme of = 0. When both N and s1 are non-zero, the group velocity never 
tends to infinity for any combination of 7 and 8. Thus the waves are always of 
finite extent, as distinct from those in a solely rotating or solely stratified fluid. 
Furthermore as I N 2  - 4Q21 --f 0 the wave region becomes smaller in extent and 
in the limit the energy is confined to the path of the body. The wave system rela- 
tive to a body moving at an angle 0 in a fluid where N > 2Q is similar to that 
generated by a body moving a t  an angle of 0 & in- in a fluid with 2Q > N .  

The characteristics of the waves are demonstrated in figures 3 (b)-(d), 4 , 5  and 
6 (a)  (plates 1-4). The theoretical phase configurations have been computed for 
equal increments of 7. Points very close together have been joined. The experi- 
ments compare quite well except where the wake interferes with the wave system. 

Theoretically each line of constant phase intersects the path of the body twice. 
One family of intersections are 2nQ/N apart, which is also the wave spacing 
when Q = 0. The other intersections are n-Q/Q apart, which is the same as that 
when N = 0. 

Impulsive-start waves have the same phase as, and are tangential to, any 
incomplete waves of the steady wave system, as in the purely stratified case 
(Stevenson 1973). 
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FIGURE 10. Oscillatory wave system with wf/N = 0.5,8 = 0. - - -, 2 n / N  = 0 ;  
--- , 2Q/N = 0.2;  -- --, 2 n / N  = 0.5;  -, 2Q/N = 0.7. 

X/R 
FIGURE 1 1 .  Oscillatory wave system when the body moves in a circular path. o,to = 0, 

o,t = T ,  N / w ,  = 10.2, 2sl/wc = 12.8, of/oc = 2.65. - - -, impulsive-start waves. 

( b )  The case w, + 0. When w, is less than both N and 2Q or when wf is greater 
than both N and 2Q, the group velocity is always finite and for each value of 4 
there are two closed waves: waves in which the crests and troughs do not 
stretch to infinity. When wf is between N and 2 0  there is, for each 4, one closed 
wave and one wave whose two arms stretch towards infinity. For other values 
of w, there are no closed waves. Obviously, incomplete waves will exist which are 
associated with the impulsive start. 
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X l R  
FIGURE 12. Oscillatory wave system when the body moves in a circular path. 

@,to = 0, w,t = m, N/O, = 10.2, 2S2loc = 9.6, Of/O, = 1.8. 

Examples of the phase configuration are shown in figures 9 and 10. There 
is more detail in these figures than in those given by Redekopp (1976). 

Cylinder moving in a circular path 

A cylinder at  ( - R, 0) starts from rest and travels in a circular path of radius R 
with a constant angular frequency wc, such that w,R = Q. Then 

R, = R( - cos wct l ,  sin wet,) and Q, = &(sin wctl, cos wet,). 

Lines of constant phase are found from (23) by letting $ = 0. 
The general characteristics of the wave patterns are the same as those in the 

previous subsection. The theory and experiments with wf = 0 are compared in 
figures 6 ( b ) ,  6(c), 7 and 8 (plates 4-6). For simplicity the theoretical waves cor- 
responding to large #J are not presented in the figures. These waves, which cor- 
respond to  energy which has been propagating for the longest time, are not 
visible in the schlieren photographs, presumably because of viscous effects. In  
the experiments large regions of the wave patterns are obliterated by the wide 
wakes. 

Examples when wf is not zero are given in figures 11 and 12 and illustrate how 
waves produced when a body is moving at  an angle 0 in a fluid with N > 2Q are 
of a similar shape to those at # + in in a fluid with 2 0  > N .  They also illustrate 
how the wave system decreases in size as IN - 2Ql-f 0. Impulsive-start waves are 
included where they are present, which is in figure 11 only. 

4. Conclusions 
Equations have been derived to determine the phase configuration of the waves 

which develop around a body moving on an arbitrary path in a rotating stratified 
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fluid. The wave patterns have been calculated using the radiation condition 
during the computation and the wavenumber surfaces have not been used ex- 
plicitly. Solutions have been obtained for bodies in steady motion and for bodies 
with a superimposed forcing frequency. Experiments have been conducted using 
a cylinder moving steadily in a rotating tank of stratified brine. The waves 
generated, viewed by a schlieren system, agree quite well with the theoretical 
phase configurations. 

The authors appreciate the helpful discussions with Professor N. H. Johan- 
nesen. The work was supported by the Procurement Executive, Ministry of 
Defence. K. S. Peat was in receipt of a Science Research Council Maintenance 
Grant. 
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I?IGURE 3.  ( ( A )  Oscillating disturbance, of = 2.70 rad/s, N = 2.32 rad/s, 2lZ = 3.14 rad/s. 
( h ) ,  (c) Cylinder rnoving vertically, .Q = 7-3 mm/s, N = 1-94 ritd/s, of = 0. (b)  212 = 0; 
( c )  2R = 3.14 rad/s. ( d )  Cylinder rnoving horizontally, Q = 8.0 mm/s, N = 1.94 rad/s, 
2.Q = 1-26 rad/s. 

PEAT A N D  STEVENSON (Faring p .  656) 
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FIGURE 4. Cyliridcr moving horizor~tally, Q = 8.0 rnrn/s, N = 1.94 ratl/s. 

(a )  2 0  = 1,88rad/s; (6) 2Cl =: 2.51 rad/s; (c) 262 = 3,14rad/s. 

PEAT AND STEVENSON 
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FIGURE 5 .  Steady v ave systenls when 0 = 20", Q = 8 mm/s, N = 1.94 rad/s. 

( a )  2R = 1.26 rad/s ;  ( h )  2 R  = 1.88 rad / s ;  (c) 262 = 2.51 rad/s. 

PICAT AND STEVENSON 
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FIGURE 6. (a )  As for figure 5 with 252 = 3.14 rad/s. ( b ) ,  ( c )  Circular path of radiiis 80 mm, 
0, = 0.29 rncl/s, N = 1-99 racl/s, S l  = 0, m,f0 = 0. ( b )  t = 9 S; ( ( 3 )  t = 24 S. 

PEAT AND STEVENSOX 
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FIGURE 7. Circular path, R = 60 mm, N = 1.99 rad/s, w, = 0.20 rad/s. (a ) ,  ( b )  2LJ = 1.26 
rad/s, and t = 24 s and 32 s respectively. (c),  ( d )  2LJ = 1.88 rad/s, and t = 24 s and 32 s 
respectively. 
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FIGURE 8. C~rciililr patli, Il = G O  Inin, N = 1.99 rad/s, wc = 0.20 ratl/s. (a) ,  ( b )  2i1 = 2.51 
ratl/s, a n d  t = 24 s ; t i id  32 s rtxspcctivdy. ( c ) ,  ( t i )  2i2 = 3.14 radls, arid t = 24 s and 32 5 

respectively. 
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